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Vertical velocity in mesoscale geophysical flows
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(Received 15 February 2002 and in revised form 12 September 2002)

An analysis of the vertical velocity field using the full generalized omega equation (ω-
equation) in a single mesoscale baroclinic oceanic gyre is carried out. The evolution of
the gyre over 20 inertial periods is simulated using a new three-dimensional numerical
model which directly integrates the horizontal ageostrophic vorticity, explicitly
conserves the potential vorticity (PV) via contour advection on isopycnal surfaces,
and inverts the nonlinear PV definition via the solution of a three-dimensional
Monge–Ampère equation. In this framework the ω-equation comes simply from the
horizontal divergence of the horizontal ageostrophic vorticity prognostic equation.
The ageostrophic vorticity is written as the Laplacian of a vector potential ϕ, from
which both the velocity and the density fields are recovered, respectively, from the curl
and divergence of ϕ. A new initialization technique based on the slow, progressive
growth of the PV field during an initial time interval is used to avoid the generation
of internal gravity waves during the initialization of the gyre. This method generates
a nearly balanced baroclinic gyre for which the influence of internal gravity waves in
the mesoscale vertical velocity field is negligible.

The numerical fields obtained are then used to carry out a first numerical analysis
of the ω-equation. The analysis shows that, for moderately high Rossby numbers,
the local and the advective rates of change of the differential ageostrophic vertical
vorticity (ζ ′

z) are of the same order of magnitude as the three largest terms in the ω-
equation. There is, however, a large cancellation between these two terms, resulting in
the approximate material conservation of ζ ′

z. This might explain the ‘over-applicability’
of the quasi-geostrophic (QG) ω-equation for Rossby numbers larger than 0.1. The
QG vertical velocity is only 22% smaller than the total vertical velocity for the case
studied (having a Rossby number of −0.5).

1. Introduction
Mesoscale geophysical flows are nearly tangential to surfaces of constant

geopotential, that is, they are dominantly ‘horizontal’. In the ocean, horizontal
velocities are about a factor 104 larger than the cross-geopotential, or vertical,
velocities.

The mesoscale vertical velocity, though small in comparison with the horizontal
velocity, is also important for the marine ecosystem, since it is able to transport
upward tens of metres of oceanic waters rich in nutrients from the dark deeper
layers to the photic zone. But direct experimental measurements of mesoscale vertical
velocities are difficult to carry out and instead a number of indirect methods have
been developed to estimate these velocities (originally for atmospheric applications,
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see Panofsky 1946). Perhaps the most successful method consists of obtaining the
quasi-geostrophic (QG) vertical velocity (wq) from a known density field ρ via the
QG ‘omega equation’ (hereafter, the ωq-equation). The ωq-equation (see e.g. Holton
1992, § 6.4) is a three-dimensional linear equation of the form Lq{wq} = Rq{ρ} where,
in Cartesian coordinates, the linear operator Lq ≡ c2∇2

h + ∂2
z is proportional to the

QG Laplacian operator, c ≡ N/f is the ratio of a given mean buoyancy frequency,
N , to a given mean inertial frequency, f , ∇h = (∂x, ∂y) is the horizontal gradient, and
on the right-hand side Rq is a known function of ρ.

Originally, the ωq-equation was derived by eliminating the local rate of change of
differential geostrophic vertical vorticity ζ g

z between the horizontal momentum and
mass conservation equations under the QG approximation. Let u = (u, v, w) denote
the three-dimensional velocity, and ω = curl u = (ξ, η, ζ ) and ωa = curl u+f k denote
the three-dimensional relative and absolute vorticity, respectively. In that original
formulation, (see e.g. Holton 1992, § 6.4) the function Rq involves two terms, namely
the differential geostrophic advection of geostrophic vertical vorticity (ug

h · ∇hζ
g)z and

the Laplacian of the geostrophic advection of density ∇2
h (ug

h · ∇hρ). However, there is
a large cancellation between these two terms (e.g. Trenberth 1978) since they both
include, with opposite signs, the geostrophic advection of differential geostrophic
vorticity ug

h · ∇hζ
g
z . This ωq-equation is referred to here as the advective ωq-equation.

Later, Hoskins, Draghici & Davies (1978) realized that Rq could be written as 2∇h · Qg
h,

where the geostrophic vector Qg
h is proportional to ∇hug

h ·∇hρ. This formulation avoids
the cancellation of terms and led to a new interpretation of the ωq-equation, known
as the Q-vector ωq-equation. In a numerical study, Strass (1994) concluded that the
pattern of the modelled w was better diagnosed using the divergence of Qg than
using the isopycnic advection and vorticity advection equations.

Subsequent studies in dynamic meteorology extended the advective ωq-equation
beyond the QG approximation with the formulation and analysis of the generalized
advective ω-equation (Krishnamurti 1968; Pauley & Nieman 1992; Räisänen 1995).
The generalized advective ω-equation exhibits, like its approximate QG counterpart,
a similar cancellation of terms, in this case between the differential advection of
vertical vorticity (uh · ∇hζ )z and the Laplacian of the advection of density ∇2

h (uh · ∇hρ),
since they both include, with opposite signs, the horizontal advection of differential
geostrophic vorticity (uh · ∇hζ

g
z ).

The first generalization of the Q-vector ωq-equation (Davies-Jones 1991) introduced
a generalized vector Q∗ made up of two contributions, namely a frontogenetical
vector ∇huh · ∇hρ and a vortex-stretching vector ∇huh · ζ h, where ζ h = (−vz, uz) is the
relative horizontal pseudovorticity (Hoskins 1975; Davies-Jones 1991). Pseudovorticity
(ζ = (−vz, uz, ζ )) may be interpreted as the three-dimensional vorticity of the
horizontal (pseudo-plane) flow. More recently Viúdez, Tintoré & Haney (1996b)
showed that the cancellation in any advective ω-equation is a result of equating
the two local rates of change of ζ g

z obtained from the horizontal momentum and
mass conservation equations instead of their material rates of change (or more
precisely, their geostrophically advected rates of change). They formulated a Q-
vector form of the generalized ω-equation (hereafter simply “the ω-equation”) and
interpreted it as an equation for the material rate of change of the differential
ageostrophic vertical vorticity ζ ′

z ≡ ζz − ζ g
z . The semi-geostrophic version of the

Q-vector ω-equation (Hoskins 1975; Hoskins & Draghici 1977) extends the QG
version by including the ageostrophic advection of the geostrophic horizontal velocity,
but leaves out the ageostrophic advection of the ageostrophic horizontal velocity
present in the generalized ω-equation. This generalized ω-equation suggests that a
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simple generalization of the geostrophic vector Qg (proportional to ∇hug
h · ∇hρ) is the

horizontal frontogenetical vector ∇huh · ∇hρ. Below, we present the first numerical
analysis of this ω-equation.

Most of the theoretical, numerical, and experimental work on the ωq-equation has
been for atmospheric applications. Leach (1987) introduced the ωq-equation in the
ocean, and it was first solved in a simplified two-dimensional setting for a density front
by Pollard & Regier (1992). More recently, the three-dimensional ωq-equation (or the
semi-geostrophic ω-equation) was solved using high-quality density data for a number
of different oceanic fronts and gyres (Viúdez, Tintoré & Haney 1996c; Rudnik 1996;
Allen & Smeed 1996). Further oceanic applications of the ωq-equation have involved
data assimilation (Viúdez, Haney & Tintoré 1996a; Shearman, Barth & Allen 2000;
Haney & Hale 2001; Naveira Garabato et al. 2001), numerical comparisons (Pinot,
Tintoré & Wang 1996), intermediate models using experimental data (Shearman et al.
2000), and a study of the errors in wq due to experimental sampling (Allen et al. 2001).
The present study carries out the numerical analysis of the full nonlinear ω-equation
using simulated data from a baroclinic gyre in the ocean.

Section 2 describes the theoretical basis of the numerical approach. The
basic equations are the three-dimensional non-hydrostatic balance of momentum,
mass conservation and the isochoric (volume-preserving) condition. The density
perturbation is described in terms of the vertical displacement D of isopycnals. Three
potentials ϕ ≡ (ϕ, ψ, φ) are introduced to describe both the three-dimensional (non-
divergent) velocity u = −curlϕ and the gradient of the scaled isopycnal displacement
D = −div ϕ, where D ≡ c2D (for details, refer to Dritschel & Viúdez 2003).
In this approach, potential vorticity (PV) is explicitly conserved by the advection
of PV contours on isopycnal surfaces (using the ‘contour advection’ algorithm of
Dritschel & Ambaum 1997). The theoretical and numerical approach is a new three-
dimensional generalization of the two-dimensional explicitly PV-conserving approach
used previously to model nonlinear internal gravity waves in the ocean (Viúdez &
Dritschel 2002). The final set of equations consists of three prognostic scalar equations:
two equations corresponding to the rate of change of the dimensionless ageostrophic
horizontal vorticity Ah ≡ (∇2ϕ, ∇2ψ) = ω̃h − ∇hD = ω̃h − ζ̃

g

h = ω̃′
h (where χ̃ ≡ χ/f

and ∇ = (∂x, ∂y, ∂z) is the three-dimensional gradient), and the equation for the
material conservation of PV, Π̇ = 0. The vertical potential φ is obtained, given ϕ, φ,
and Π , by inverting the nonlinear definition of PV. This theoretical approach (PV
inversion) and the numerical method (advection of PV contours on isopycnals) limit
the applicability of our study to static stability processes in the ocean. Statically stable
internal gravity waves, with periods shorter than the inertial period and larger than
the Brunt–Väisälä period, are also correctly modelled. Smaller scale (sub-mesoscale)
phenomena however, like those involving isopycnal overturning and mixing, are
therefore excluded.

Section 3 describes the results of a numerical experiment. We study the evolution
over 20 inertial periods of a single oceanic baroclinic gyre characterized initially by
an ellipsoidal distribution of PV. The simulation domain is triply periodic. A new
initialization procedure is used that is based on the progressive growth of the PV field
during the first five inertial periods. This procedure largely suppresses the generation
of internal-gravity waves, leading to a nearly ‘balanced’ flow. Since ζ̃ ′

z = −∇h · Ah,
the ω-equation may be derived from the divergence of the rate of change of Ah.
Every term in the ω-equation is then evaluated from the potentials, and the most
relevant terms are visualized using synoptic spatial distributions and grid-point time
series.
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The analysis carried out here assesses the magnitude of the various terms in the
ω-equation in a PV-dominated regime, in which the local change of the materially
conserved PV is opposite to its advective rate of change. This is to be distinguished
from the internal-gravity-wave-dominated regime, in which the flow is characterized,
at least locally, by plane wave solutions and for which there is no local change of
PV. The analysis provides a simple explanation for the well-recognized, but still not
well-understood, ‘over-applicability’ of the ωq-equation. The over-applicability of the
ωq-equation refers to the relatively good agreement of wq with the total vertical
velocity w even for Rossby numbers as large as 0.5. This study suggests that the over-
applicability of the ωq-equation is due to the approximate material conservation of ζ ′

z.
Contrary to what is assumed when the ωq-equation is derived from the QG horizontal
momentum balance, this equation does not neglect both the local and advective rates
of change of ζ ′

z. The ωq-equation does however neglect the material (geostrophically
advected) rate of change of ζ ′

z. Here it is shown that, for moderately high Rossby
numbers in the PV-dominated regime, the local and advective rates of change of ζ ′

z

are of the same order of magnitude as the largest terms in the ω-equation. However, a
large cancellation occurs between these terms, with the result that the material rate of
change of ζ ′

z is significantly smaller than the local and advective rates of change, and
can therefore be neglected in the QG approximation. This quasi-conservation of ζ ′

z

might be related to the exact material conservation of PV. Finally, some conclusions
are given in § 4.

2. Theoretical development
2.1. Basic equations

We consider isochoric (volume-preserving) motion in a reference frame rotating
with constant angular velocity f/2 around the vertical z-axis with respect to an
inertial frame. The pressure (plus centripetal potential) is denoted by Φ(x, t). Vector
components here always refer to Cartesian components. The basic equations are
the non-hydrostatic balance of linear momentum in a rotating frame, the mass
conservation equation and the isochoric condition:

u̇h + f k × uh = −α ∇hΦ, (2.1a)

ẇ = −α (Φz + gρ), (2.1b)

ρ̇ + ρ ∇ · u = 0, (2.1c)

∇ · u = 0, (2.1d)

where α ≡ ρ−1 is the specific volume and g the acceleration due to gravity. The initial
unknowns are the three-dimensional velocity field (u, v, w), the pressure Φ , and the
density ρ. Subscripts (x, y, z, t) denote partial derivatives. The dot (̇ ) = d( )/dt =
( )t + u · ∇( ) denotes the material time derivative (in the rotating frame) and the rest
of the symbols have their usual meaning.

2.2. Mass conservation

The density anomaly ρ ′ is defined as ρ ′(x, t) ≡ ρ(x, t) − �z z − ρ0, where ρ0 and �z

are given constants. It is convenient to express ρ in terms of the field d defined by

d ≡ (ρ − ρ0)/�z. (2.2)

The value d(x, t) represents the depth, or vertical location, that an isopycnal located
at x at time t has in the reference density configuration defined by ρ0 + �zz. Thus,
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the density field is expressed in terms of distances. The displacement D of isopycnals
with respect to the reference density configuration is

D(x, t) ≡ z − d(x, t). (2.3)

Thus, D(x, t) is the vertical displacement of the isopycnal currently located at (x, t)
with respect to its reference position. The incompressibility condition ρ̇ = ḋ = 0 is
expressed in terms of D as

Ḋ = w. (2.4)

In order to define geostrophic quantities, it is also convenient to define a scaled
isopycnal vertical displacement

D ≡ c2D, (2.5)

which is related to ρ by f 2D(x, t) − N2z = g [ρ(x, t)/ρ0 − 1], where N2 ≡ −α0 g�z is
the square of the background Brunt–Väisälä frequency (constant), and α0 ≡ ρ−1

0 is a
constant specific volume.

2.3. Geostrophic quantities

For any quantity χ let χ̃ ≡ χ/f . We define the geostrophic velocity shear through
the ‘thermal wind’ expression

ũg
z ≡ −k × ∇hD = (Dy, −Dx). (2.6)

The relative pseudovorticity is defined in Cartesian components as ζ ≡ (−vz, uz, ζ ),
which is the curl of the horizontal velocity. The horizontal gradient of D may be
interpreted as the dimensionless horizontal geostrophic pseudovorticity

ζ̃
g
h =

(
−ṽg

z , ũ
g
z

)
= ∇hD. (2.7)

Since ζ is solenoidal (∇ · ζ = 0) the horizontal divergence of ζ̃
g
h is proportional to the

differential geostrophic vertical vorticity:

−∇h · ζ̃
g
h =

(
ṽg

x − ũg
y

)
z
= ζ̃ g

z = −∇2
h D. (2.8)

Using Ḋ = c2w (2.4), it follows that the rate of change of ∇D may be written

∇̇D = c2∇w − ∇u · ∇D. (2.9)

The horizontal component of the above equation expresses the rate of change of ζ̃
g
h .

It is used below to obtain the rate of change of the horizontal ageostrophic vorticity
Ah = ω̃h − ∇hD.

2.4. The vorticity equation

The Cartesian components of the absolute vorticity are ωa ≡ ∇ × u + f k = (ξ, η, ζ+f ).
The vorticity equation consistent with (2.1) is ω̇ = ωa · ∇u + α2∇ρ × ∇Φ . In the
Boussinesq approximation the baroclinic term is α2∇ρ × ∇Φ � gα2

0(−ρy, ρx, 0) =
f 2k × ∇hD. Thus, the rate of change of ω̃ may be written as

˙̃ω = ω̃ · ∇u + uz + f k × ∇hD, (2.10)

and is used below to express the rate of change of Ah.

2.5. The horizontal ageostrophic vorticity potentials

We introduce a three-dimensional vector potential ϕ and its Laplacian A by the
definitions

A = (A, B, C) ≡ ∇2ϕ = (∇2ϕ, ∇2ψ, ∇2φ) ≡ ω̃ − ∇D. (2.11)
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Taking the divergence of (2.11), and using the identity ∇2ϕ = ∇(∇ · ϕ) − ∇ × ∇ × ϕ,
we obtain

D = −∇ · ϕ, ũ = −∇ × ϕ, (2.12a, b)

showing that D is the ‘source’ of −ϕ, and −ϕ is the velocity potential of ũ. Thus, D

is the source of the velocity potential of ũ. Because ζ̃
g
h = ∇hD by (2.7), the horizontal

vector Ah = (A, B) may be interpreted as the dimensionless horizontal ageostrophic
vorticity

Ah = ω̃h − ζ̃
g
h ≡ ω̃′

h. (2.13)

Ah is related to the dimensionless horizontal ageostrophic pseudovorticity ζ̃ ′
h (also

called the thermal-wind imbalance vector) by ω̃′
h = ζ̃ ′

h − k × ∇hw̃. The horizontal
divergence and vertical component of the curl of Ah have the following meanings:

∇h · Ah = −ζ̃ ′
z, k · ∇ × Ah = −∇2w̃, (2.14)

where, remarkably, neither ζ̃ ′
z nor ∇2w̃ depend on the vertical potential φ.

2.6. The horizontal ageostrophic vorticity equation

From the rates of change of ∇D (2.9) and ω̃ (2.10), and using the kinematic relation
uz = ∇w − k × ωh to express uz − c2∇w + f k × ∇hD = (1 − c2)∇w − f k × (ω̃h − ∇hD),
we may finally write the rate of change of A as

Ȧ = −f k × Ah + (1 − c2)∇w + ω̃ · ∇u + ∇u · ∇D. (2.15)

The horizontal component of (2.15) is similar to the equation for the rate of change
of the horizontal ageostrophic pseudovorticity ζ ′

h (equation (3.15) in Davies-Jones
1991) except that (2.15) involves the rate of change of the complete horizontal
ageostrophic vorticity ω̃′

h. These horizontal components (the components of Ȧh) are
the two scalar prognostic equations integrated in the numerical model. Instead of
the vertical component of (2.15), the explicit conservation of PV is used as the third
prognostic equation. The horizontal potentials ϕh = (ϕ, ψ) are obtained from the
inversion ϕh = ∇−2Ah, while the vertical potential φ is obtained from the inversion
of the definition of PV.

In practice, the horizontal ageostrophic vorticity Ah is numerically integrated in a
triply periodic domain using an explicit leap-frog time-stepping method. Spatial fields
are computed using the ‘pseudospectral’ method, wherein derivatives are computed
in spectral space, while nonlinear products are computed on the physical grid, and
fast Fourier transforms are used to go from one representation to the other. The
numerical parameters are given below.

2.7. PV inversion and a three-dimensional Monge–Ampère equation

The dimensionless PV density is defined as

Π ≡ ω̃a · ∇d = (ω̃ + k) · (k − ε2∇D) = 1 + ζ̃ − ε2Dz − ε2ω̃ · ∇D.

Since ζ̃ = ∇2
h φ − ∇h · ϕhz, and replacing ω̃ = A + ∇D, the dimensionless PV anomaly

� ≡ Π − 1 may be written in terms of ϕ as

� = Lq{φ} − (1 − ε2)∇h · ϕhz + ε2[∇2ϕ − ∇(∇ · ϕ)] · ∇(∇ · ϕ), (2.16)

where the linear operator Lq ≡ ε2Lq = ∇2
h + ε2∂zz is the QG Laplacian operator.

Since the material conservation of PV,

�̇ = 0, (2.17)
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(a) (b)

(c) (d)

Figure 1. Horizontal location of PV contours at z = 0 (iρ = 64) and (a) at t = 0, (b) t = 5,
(c) t = 10, and (d) t = 15 inertial periods. The dots in the contours indicate fluid particles.
Domain extent is 102([−π, π] × [−π, π]).

is made explicit in our approach by the advection of PV contours on isopycnal
surfaces (Dritschel & Ambaum 1997), equation (2.17) replaces the equation for Ċ in
(2.15), and the inversion of (2.16) for φ replaces the inversion relation φ = ∇−2C.
Inversion of (2.16) for the potential φ (given ϕ, ψ , and � ) involves a nonlinear
(double) Monge–Ampère equation,

Ie

(
φzz∇2

h φ − φ2
xz − φ2

yz

)
+ Ia∇2

h φ + 2Ibφxz + 2I ′
bφyz + Icφzz + Id = 0, (2.18)

with coefficients

Ia = 1 + ε2Θz, Ic = ε2(1 − Θz), Ie = ε2, (2.19a, b, c)

Ib = ε2
(

1
2
∇2ϕ − Θx

)
, I ′

b = ε2
(

1
2
∇2ψ − Θy

)
, (2.19d, e)

Id = ε2[Θx∇2ϕ + Θy∇2ψ − (∇Θ)2] − (1 − ε2)Θz − �, (2.19f )

and where Θ ≡ ∇h · ϕh.
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Figure 2. Three-dimensional view of the PV contours (a) at t = 0, (b) t = 5, (c) t = 10 and
(d) t = 15 inertial periods.

The numerical procedure used to solve this nonlinear equation is based on iteration.
We collect the linear, constant-coefficient terms of φ on the left-hand side, and consider
all remaining terms (computed using a previous guess for φ) as a source on the right-
hand side. The result is an equation of the form

Lq{φ} = S{ϕ}, (2.20)

where S is the ‘source’. Given S, this equation is trivially inverted in spectral space to
find a new approximation to φ. If this approximation differs by less than a prescribed
tolerance (here 10−7) from the previous approximation, the solution is accepted.
Otherwise, S is recomputed using the new φ (all other potentials remain unchanged),
and the procedure is repeated. This procedure normally converges in a few iterations,
except when Π is close to zero or is very large.

2.8. The generalized ω-equation

The generalized ω-equation can be obtained from the horizontal divergence of (2.15).
Since ∇h · Ah = −ζ̃ ′

z (2.14) the ω-equation may be interpreted as the equation for the

rate of change of ζ̃ ′
z. Defining the vector Qh ≡ ∇huh · ∇hD, the ω-equation (Viúdez

et al. 1996b) can be written as

dζ̃ ′
z/dt = −∇h · [2 Qh + (Dz − c2)∇hw] + (ζ̃ + 1)wzz + ζ̃ ′

hz · ∇hw − ζ̃ ′
h · ∇2

h uh . (2.21)
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Figure 3. Vertical distribution at y = 0 (grid point iY = 32) and at t = 11 i.p. of D (thick
lines, contour interval � = 1×10−2, extreme contour values ±16×10−2) and gridded PV (thin
lines, � = 0.1, minimum contour value −0.4). Domain extent is (102[−π, π]) × [−π, π]. In this
and subsequent similar figures, solid lines are for positive values, dashed lines negative, and
the short-dashed line is the zero contour.

Under the QG approximation, the horizontal velocity is replaced by its geostrophic
approximation (uh → ug

h), and assuming that for small Rossby numbers the flow is
both inertially very stable (|ζ̃ | � 1) and statically very stable (|Dz| � c2), we may
derive the Q-vector ωq-equation

Lq{wq} = 2∇h · Qg
h , (2.22)

where Qg
h ≡ ∇hug

h · ∇hD is the horizontal geostrophic Q-vector. For diagnostic
purposes, in the numerical code this linear equation is directly solved for wq by
inverting the operator Lq in spectral space.
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1.0

Figure 4. Horizontal distribution at z = −0.74 (iZ = 50) and at t = 11 i.p. of ϕh and φ

(contour interval � = 1 × 10−2).

3. Numerical results
This section describes the evolution over 20 inertial periods of a single baroclinic

gyre initially defined by a three-dimensional ellipsoidal distribution of PV.

3.1. Numerical parameters and initial set-up of the gyre

We consider a domain having (nX, nY , nZ) = (64, 64, 128) grid points, a vertical extent
LZ = 2π (in arbitrary space units) and horizontal extents LX and LY prescribed
by the ratios LX/LZ = LY /LZ = 100. This ratio is equal to the ratio of the mean
Brunt–Väisälä to Coriolis frequency c ≡ N/f = 100, where N = 2π (in arbitrary time
units). Thus the time interval of one (mean) buoyancy period (b.p.) is �t = 1. One
inertial period (i.p.) equals 100 b.p. The time step is set to δt = 0.1 (a tenth of a
buoyancy period). The number of isopycnal surfaces nl is set equal to the number of
grid points in the vertical direction, nl = nZ = 128.

For simplicity the initial PV anomaly distribution is taken to be an ellipsoidal vortex,
within which the PV varies only across nested ellipsoidal surfaces. The PV anomaly,
� , constant on ellipsoidal surfaces, varies linearly with the ellipsoidal volume, with
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Figure 5. Vertical distribution (as in figure 3) of ϕ (thin lines, � = 1 × 102)
and φ (thick lines, � = 0.1).

� = 0 on the outermost surface, and � = �i at the core. Since the domain integral
of � must vanish in the periodic domain used, there is a small background PV
anomaly �b everywhere outside the vortex. This PV distribution is discretized by
placing a number of PV contours within each isopycnal surface crossing through the
vortex. The middle isopycnal surface (iρ = 64) has the maximum number of contours,
nc = 10. Between each contour, � is uniform, and across each contour � jumps by
a fixed increment of �� ≡ (�i − �b)/nc, except for the outermost contour where �

jumps by ��/2 (see Dritschel 1998).
The initial PV contours (figures 1 and 2) are ellipses with a ratio of major (aM ) to

minor (am) axes lengths re = aM/am = 2.4. In the middle surface iρ = 64 the largest
ellipse has aM = 4.8c and am = 2.0c. On the other isopycnals, we keep the same
horizontal aspect ratio but reduce the axis lengths to fit within a three-dimensional
ellipsoid of vertical axis length equal to am in the scaled (x, z)-plane (figures 2 and 3).
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Figure 6. Horizontal distribution (as in figure 4) of D (thick lines, � = 1 × 10−2, with
minimum contour −13 × 10−2) and PV contours on iρ = 52 (thin lines).

The PV anomaly at the centre of the vortex is set to �� = −0.5 at the end of
the initialization procedure described below. This corresponds to an anticyclonic gyre
when the motion is in near geostrophic balance.

3.2. Interpolation procedure

The PV evolution is carried out by explicitly tracking material contours on isopycnal
surfaces. However, much of the numerical code is grid based, so it is necessary
to convert these PV contours to a three-dimensional gridded field (e.g. for solving
the Monge–Ampère equation). The procedure adopted follows the ‘contour-to-grid’
conversion procedure introduced by Dritschel & Ambaum (1997). On each isopycnal
surface, horizontal grid line crossings are sought for each contour, and this information
enables one to build the gridded PV field – on this surface. Here, unlike in Dritschel
& Ambaum (1997), we furthermore interpolate the PV from isopycnal surfaces to
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Figure 7. Horizontal distribution (as in figure 6) of w (thick lines, � = 1 × 10−5) and PV
contours on iρ = 52 (thin lines).

equally spaced vertical grid points. Linear interpolation is used between adjacent
isopycnals, for a fixed horizontal grid point.

3.3. Initialization procedure

Since a gyre is never in exact geostrophic balance (in part because of its centripetal
acceleration), an initialization procedure must be carried out to avoid the initial
generation of internal gravity waves by spontaneous adjustment. Otherwise, fields of
interest like the vertical velocity would be swamped by imbalanced motions, rendering
any diagnostic of balanced motion useless. This is particularly true of the vertical
velocity, whose balanced component is typically 104 times smaller than horizontal
velocities. The initialization procedure must be good enough to suppress all internal
gravity waves having vertical velocity amplitudes larger than or comparable to the
typical amplitude of the mesoscale vertical velocity.
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Figure 8. Vertical distribution (as in figure 3) of w (thick lines, � = 1 × 10−5) and gridded
PV (thin lines, � = 0.1, minimum contour value −0.4).

The initialization procedure used here is based on the slow, progressive growth of
the PV field during an initial time interval from t = 0 to t = ti . In practice, we have
found that ti = 500 (5 i.p.) is sufficient to avoid significant excitation of internal gravity
waves, leading to a nearly balanced flow. The implementation of this procedure in our
explicitly PV-conserving numerical method is remarkably straightforward. During the
initialization period, the gridded PV field � (x, t) (found at every time step by the PV
interpolation procedure described above) is multiplied by a weight W (t), here given
by

W (t) ≡ 1
2
(1 − cos(πt/ti)) . (3.1)

Note that W is smooth at t = 0 and at t = ti (W (0) = 0, W (ti) = 1, Wt (0) = Wt (ti) = 0).
This smoothness was found to help minimize the initial generation of internal gravity
waves. The weight (3.1) produced better results than a linear ramp.
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(a) (b)

(c) (d)

Figure 9. Horizontal distribution (as in figure 4) of (a) −2∇h · Qh (� = 2 × 10−4), (b) c2∇2
h w

(� = 2 × 10−4), (c) wzz (� = 1 × 10−4), and (d) −ζ̃ ′
h · ∇2

h uh, (� = 1 × 10−4).

3.4. Analysis

3.4.1. PV, potentials, and displacement

The PV evolution (figures 1 and 2) shows that the outer part of the anticyclonic
vortex is swept into a large filament encircling the faster-rotating vortex core. The
vertical extent and symmetry of the PV vortex at the end of the initialization period
(t = 5 i.p.) is shown in figure 3. The vortex core becomes more axisymmetric and does
not continue shedding PV (compare the inner PV ellipse at t = 0 and t = 15 i.p.).
This filamentation and subsequent stabilization of the gyre takes place in a similar
way on every isopycnal surface, as is evident from the three-dimensional PV contour
images in figure 2.

In the following analysis we select t = 11 i.p. as a representative time in the vortex
evolution. At this time the vortex is well beyond the end of the initialization period
(ti = 5 i.p.), and moreover its shape (with its major axis lying between the x- and y-
axes) is convenient for plotting purposes. The horizontal vector potential ϕh at this
time (figure 4) is directed toward the centre of the gyre at negative depths. At positive
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Figure 10. Domain-average time series of the absolute value of −2∇h · Qh (1), c2∇2
h w (2), wzz

(3), ζ̃ ′
zt (4), uh · ∇hζ̃

′
z (5), −ζ̃ ′

h · ∇2
h uh (6), ζ̃ ′

zt + uh · ∇hζ̃
′
z (7), −Dz∇2

h w (8), ζ̃wzz (9), −∇hDz · ∇hw

(10), wζ̃ ′
zz (11), and ζ̃ ′

hz · ∇hw (12). A logarithmic scale, in units of 10−4, is used for the vertical
axis. The average is restricted to those locations having a kinetic energy larger than the
domain-average value.

depths the opposite occurs, showing that the horizontal potentials (ϕ, ψ) each have
an octupole distribution with eight extrema (figure 5). The vertical potential φ is
typically three orders of magnitude larger than ϕ and ψ and has an almost spherical
shape with a maximum value at the core of the gyre (compare figures 4 and 5).

The vertical displacement D of isopycnals (figures 3 and 6) is greatest where the
largest vertical PV gradients occur. Positive displacement (elevated isopycnals) occurs
in the lower part of the gyre, while negative displacement (depressed isopycnals)
occurs in the upper part. The filamentation of PV appears in D (figure 6) as frontal
anomalies on the otherwise elliptical D contours.

3.4.2. Vertical motion from PV conservation

From the horizontal distributions of PV and D (figure 6 shows the lower part of
the domain), it is possible to infer the sign of the vertical motion. First notice that
the contours of D and PV move anticyclonically with the same phase speed, and that,
qualitatively, the D contours form wider ellipses than the PV contours (the D and PV
contours intersect). Thus, since fluid particles move along PV contours faster than the
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Figure 11. Time series at grid point (iX, iY , iZ) = (45, 38, 50) (i.e. (x, y, z) � (1.2 × 102,
−0.50 × 102, −0.74)) from t = 8 to t = 16 i.p. of −2∇h · Qh (1), c2∇2

h w (2), wzz (3), and

−ζ̃ ′
h · ∇2

h uh (4). The vertical axis is in units of 10−4.

phase speed (cf. figure 1), the fluid particles approaching the vertex of the PV ellipse
must climb the isopycnal surface (and hence have w > 0). Similarly, fluid particles
leaving the vertex of the PV ellipse must move down the isopycnal surface (and
hence have w < 0). In the upper part of the domain (figure 3) the PV contours have
the same shape as illustrated here, but the displacement has the opposite sign. This
implies that the vertical velocity is exactly reversed in the upper half of the domain,
and overall has an octupole structure. As the vortex becomes more axisymmetric,
the PV ellipse widens (figure 1) and the difference between the PV and D ellipses
becomes less pronounced. As a result, the vertical velocity decreases in magnitude at
later times.

3.4.3. Vertical velocity

The vertical velocity w (figures 7 and 8) is consistent with the inferences made
above. The field w has an octupole structure with vertical symmetry and symmetry
with respect to the central point in the domain. Extreme values of w occur at the edge
of the PV ellipsoid. The upward vertical velocity at the rear edge of the clockwise-
rotating PV vortex (maximum value: 1.1 × 10−4) has a magnitude larger than the
downward velocity at the leading PV edge (maximum value: 0.9×10−4). These values
are four orders of magnitude smaller than the maximum horizontal speeds, which are
roughly 1 on the middle isopycnal surface.
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Figure 12. As in figure 11 but for ζ̃ ′
zt (1), uh · ∇hζ̃

′
z (2), and ζ̃ ′

zt + uh · ∇hζ̃
′
z (3). The vertical axis

is in units of 10−3.

3.4.4. Analysis of the generalized ω-equation

We now analyse every term in the generalized ω-equation (2.21) and see how these
are related to the vertical velocity. Equation (2.21) is decomposed term by term as

ζ̃ ′
zt + uh · ∇hζ̃

′
z + wζ̃ ′

zz = −2∇h · Qh − ∇hDz · ∇hw − Dz∇2
h w + c2∇2

h w

+ wzz + ζ̃wzz + ζ̃ ′
hz · ∇hw − ζ̃ ′

h · ∇2
h uh. (3.2)

One of the largest terms in (3.2) is −2∇h · Qh (see its horizontal distribution in
figure 9a). This has large magnitude along the edge of the vortex, with extrema
on both sides of every vertex. The maxima and minima are clearly related to the
maxima and minima of w (compare with figure 7). The filamentary PV anomalies are
also clearly observed in figure 9(a) though these are of second order in importance.
Spatial-average time series (figure 10) show that this term is the largest, in an average
sense, over the evolution of the vortex. Time series at one location (figure 11) show
however that at certain times other terms in (3.2) may be larger.

The next most important term is c2∇2
h w, as seen from the spatial-average time series

(figure 10). Its horizontal distribution (figure 9b) shows that it is largely opposite in
sign to −2∇h · Qh so that a significant cancellation of these two terms occurs (see
figure 9a and the time series at one location in figure 11). However c2∇2

h w also contains
second-order contributions from small internal gravity waves generated apparently
by the vortex filamentation.

We next group together three different terms of similar magnitude in their
spatial averages. The first one is wzz. This term exhibits an octupole structure with
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(a) (b)

(c)

Figure 13. Horizontal distribution (as in figure 4) of (a) ζ̃ ′
zt , (b) uh · ∇hζ̃

′
z, and

(c) ζ̃ ′
zt + uh · ∇hζ̃

′
z. Contour interval � = 2 × 10−4.

second-order internal waves (figure 9c) and is broadly similar to c2∇2
h w. The times

series (figure 11) confirm that the sign of both terms coincides and that wzz has a
smaller magnitude in an average sense (figure 11).

The two other terms in this group are the local rate of change of differential
ageostrophic vorticity (ζ̃ ′

zt ) and its horizontal advection (uh · ∇hζ̃
′
z). The spatial

distribution and magnitude of these two terms in the context of the ω-equation
are among the most important findings in this work and, consequently, we examine
these terms in a little more detail. At some locations, these two terms are the largest
ones in the ω-equation (figure 12). Their spatial averages are of the same order of
magnitude as, though smaller than, the spatial averages of −2∇h · Qh and c2∇2

h w

(figure 10). However, both terms show significant cancellation, implying that ζ̃ ′
zt is

conserved to first order within the vortex (mesoscale) motion. As a result their joint
contribution to the ω-equation is significantly smaller. The local rate of change of ζ̃ ′

z
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Figure 14. As in figure 6 but for ζ̃ ′
z (thick lines, � = 1 × 10−6) and PV contours (thin lines).

and the term wzz are of the same order of magnitude (0.8 × 10−4) in spatial averages
(figure 10), while the average material rate of change of ζ̃ ′

z is smaller than any of the
three QG terms and therefore may be consistently neglected.

The approximate cancellation between these terms is also apparent in their hori-
zontal distributions (figure 13). These display alternating bands of positive and
negative values along the outer part of vortex, with an almost constant zero value at
the core. These distributions can be understood from the horizontal distribution of
ζ̃ ′
z (figure 14). The differential ageostrophic vorticity exhibits positive extrema outside

the vortex and negative inside. Since ζ̃ ′
z is almost materially advected as the vortex

rotates, an observer located at a fixed spatial location would measure an increase and
then a decrease of ζ̃ ′

z as the tip (or vertex) of the vortex core passes over, followed by

a second increase and decrease of ζ̃ ′
z as the vortex core leaves. The pattern of ζ̃ ′

zt in

figure 13 can be thus understood from the approximate material advection of ζ̃ ′
z.

The magnitude of −ζ̃ ′
h · ∇2

h uh has a spatially averaged value of 0.4×10−4, but locally
may be as important as the largest terms (figure 11). This term (see figure 9d ) has an
octupole structure similar to −2∇h · Qh (figure 9a). Below this term in figure 10 there is
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Figure 15. (a) As in figure 12 but from t = 16 to t = 18 i.p., ζ̃ ′
zt (1), uh · ∇hζ̃

′
z (2), and

ζ̃ ′
zt + uh · ∇hζ̃

′
z (3). (b) As in figure 11 but from t = 16 to t = 18 i.p., −2∇h · Qh (1), c2∇2

h w (2),

wzz (3), and −ζ̃ ′
h · ∇2

h uh (4). The vertical axes are in units of 10−4.

a large gap in magnitude to the remaining terms in (3.2), which are clearly of second
and third order (their distributions are not shown here). Thus, for consistency, an
improved ωq-equation should retain this term as a priority over any other remaining
term in the ω-equation. Note particularly that the term ζ̃wzz is clearly smaller than
−ζ̃ ′

h · ∇2
h uh and of the same order of magnitude as, though also smaller than, the term

−Dz∇2
h w.

3.4.5. Internal wave vertical motion

The parts of the flow outside the PV-dominated region exhibit a different balance
in the ω-equation. The time series at the same grid point shown in figures 11 and 12
but for the next two inertial periods, once the PV vortex has passed this location,
shows that the maxima of ζ̃ ′

zt and uh · ∇hζ̃
′
z have decreased by one order of magnitude

(see figure 15) There is still a cancellation between these two terms, but this is not
as large as in the PV-dominated regime. The material rate of change of ζ̃ ′

z is of the
same order of magnitude as in the PV-dominated regime, but now since −2∇h · Qh

is almost one order of magnitude smaller, this rate of change becomes important
in the balance. There are three kinds of motion exhibited among the terms. First,
−2∇h · Qh and −ζ̃ ′

h · ∇2
h uh show no wave motion at all, and the latter term is now

negligible. Second, uh · ∇hζ̃
′
z, wzz, ζ̃ ′

zt and c2∇2
h w display wave motions with a period of

about half the inertial period. Third, the terms ζ̃ ′
zt and c2∇2

h w show also wave motions

having shorter periods. Thus, the high frequency in the material rate of change of ζ̃ ′
z

is due to the local rate of change, which is balanced by the high frequency change of
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Figure 16. Horizontal distribution (as in figure 6) of wq (thick lines, � = 1 × 10−5) and PV
contours (thin lines).

c2∇2
h w. The high frequency in the material rate of change of ζ̃ ′

z is the residual of the

cancellation between the local change ζ̃ ′
zt and the advective change uh · ∇hζ̃

′
z, and it is

balanced by the high frequency change of wzz and c2∇2
h w, which add. Linear plane

waves satisfy the balance ζ̃ ′
zt = c2∇2

h w + wzz. This balance may be expected to hold
only where the isopycnal displacement is sufficiently small (i.e. far from the main
vortex). When the nonlinear term uh · ∇hζ̃

′
z vanishes in figure 15 (this happens around

t = 18 i.p.) the isopycnal displacement is large enough to contribute to −2∇h · Qh,
and then the dominant balance is between this term and the three terms of the plane
wave balance.

3.4.6. Quasi-geostrophic vertical velocity

The quasi-geostrophic vertical velocity wq obtained solving (2.22) (figure 16) shows
two main differences with respect to w (figure 7). The first is that w displays second-
order internal gravity waves, not present in the smoother distribution wq (internal
gravity waves are filtered out in the QG approximation). The second is that the
magnitude of wq is usually smaller than that of w (see the scatter-plot of wq versus
w in figure 17). A linear fit using a ‘robust’ least-absolute-deviation method gives



Vertical velocity in mesoscale geophysical flows 221

1.0

0.5

0

–0.5

–1.0

–1.0 –0.5 0 0.5 1.0

wq

w

Figure 17. Scatter plot of wq (y-axis) versus w (x-axis) at t = 11 i.p. (there are
64 × 64 × 128 = 524 288 points in the plot).

wq = 0.784w + [10−14] (mean absolute deviation 0.75 × 10−2) for the data shown
in figure 17, meaning that wq is about a 22% smaller than w. This difference
depends on the magnitude of the PV anomaly. A second experiment, for a weaker
anticyclonic gyre with a PV anomaly of � = −0.3 at its centre, gave the relation
wq = 0.898w + [10−15]. In this case wq is only about a 10% smaller than w.

4. Concluding remarks
This work is a numerical analysis of the vertical velocity field in a single mesoscale

baroclinic oceanic gyre. The evolution of the gyre during 20 inertial periods was
simulated using a new three-dimensional numerical model which integrates the
horizontal ageostrophic vorticity and explicitly conserves the PV via contour advection
on isopycnal surfaces. A new initialization technique based on the slow, progressive
growth of the PV field during an initial time interval was used to avoid the generation
of internal gravity waves during the initialization of the gyre. The numerical balanced
fields obtained were then used to carry out the first numerical analysis of the
generalized ω-equation.

The use of the ageostrophic vorticity as a prognostic quantity, which is the Laplacian
of a vector potential defining both the velocity and the density field, has been
shown to be a powerful and feasible approach. This approach is combined with an
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explicit PV conservation method and the numerical inversion of a three-dimensional
Monge–Ampère equation. In this framework the ω-equation is simply the horizontal
divergence of the horizontal ageostrophic vorticity prognostic equation. Also, the PV
initialization technique has been proven to be a very efficient one. It is able to generate
a nearly balanced baroclinic gyre in which the influence of internal gravity waves
in the mesoscale vertical velocity field is negligible. Internal gravity waves generated
during the evolution of the gyre seem to be associated with vortex filamentation, but
these waves are of second order in the vertical velocity field.

The numerical analysis of the generalized ω-equation has shown that, for moderately
high Rossby numbers (� = −0.5), the local and the advective rates of change of
ζ ′
z are of the same order of magnitude as the three largest terms in the ω-equation.

There is, however, a large cancellation between these two terms, resulting in the
approximate material conservation of ζ ′

z. This might explain the over-applicability of
the QG ω-equation for Rossby numbers larger than 0.1. It has been also shown that
the term −ζ̃ ′

h · ∇2
h uh is the fifth-most important one in the ω-equation. The terms ζ̃wzz

and Dz∇2
h w are both of second order. The non-QG material rate of change of ζ ′

z, the
fourth-most important term in the ω-equation, seems therefore to establish a limit for
obtaining a diagnostic (time-independent) ω-equation that is more accurate than the
QG ω-equation.

Future work along these lines might be directed toward the exploitation of the
numerical approach in studying other geophysical flow phenomena. The success
of the PV initialization method might also require further systematic study. And
finally, further theoretical work is required to elucidate how the approximate material
conservation of ζ ′

z is related to the exact conservation of PV.

Support for this research has come from the UK National Environment Research
Council (grant number GR3/11899), the Spanish program Ramón y Cajal 2001 and
the Ministerio de Ciencia y Tecnoloǵıa (grant number REN2002-01343).
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Räisänen, J. 1995 Factors affecting synoptic-scale vertical motions: a statistical study using a
generalized omega equation. J. Mar. Res. 54, 239–259.

Rudnik, D. L. 1996 Intensive surveys of the Azores Front. 2. Inferring the geostrophic and vertical
velocity fields. J. Geophys. Res. 101, 16291–16303.

Shearman, R. K., Barth, J. A. & Allen, J. S. 2000 Diagnosis of the three-dimensional circulation
in mesoscale features with large Rossby number. J. Phys. Oceanogr. 30, 2687–2709.

Strass, V. H. 1994 Mesoscale instability and upwelling. Part 2: Testing the diagnostics of vertical
motion with a three-dimensional ocean front model. J. Phys. Oceanogr. 24, 1759–1767.

Trenberth, K. E. 1978 On the interpretation of the diagnostic quasi-geostrophic omega equation.
Mon. Wea. Rev. 106, 131–137.
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